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Events collected by the Collider Detector at Fermilab (CDF) with an energetic jet plus

large missing transverse energy can be used to search for physics beyond the Standard

Model. We see no deviations from the expected backgrounds and set upper limits on the

production of new processes. We consider in addition the production of light gravitinos

within the framework of the Gauge Mediated Supersymmetry Breaking models and set a

limit at 95% con�dence level on the breaking scale
p
F � 217 GeV, which excludes gravitino

masses smaller than 1:1� 10�5 eV/c2.

PACS numbers: 14.80.-j, 13.85.Rm, 13.87.Ce
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In p�p collisions undetectable particles manifest themselves as missing transverse energy, E/
T
. Events

characterized by large amounts of E/
T
are interesting for searches of physics beyond the Standard Model.

Supersymmetry, for instance, relates each bosonic/fermionic Standard Model particle to a fermionic/bosonic

superpartner, providing a solution to the hierarchy problem [1]. In supersymmetric models with Gauge

Mediated Supersymmetry Breaking (GMSB), the goldstino, a massless and neutral spin- 1
2
particle, is intro-

duced. When gravitation is added and supersymmetry is realized locally the gauge particle, graviton, has a

spin- 3
2
partner, the gravitino ( ~G), which acquires a mass, m ~G

, while the goldstino is absorbed [2].

At the Tevatron, gravitinos can be produced in pairs in association either with radiation jets according to

the processes q�q ! ~G ~Gg, qg ! ~G ~Gq, �qg ! ~G ~G�q and gg ! ~G ~Gg, or with a photon following q�q ! ~G ~G. In

the scenario in which all other supersymmetric particles are heavy, the main parameter upon which these

processes depend is the supersymmetry-breaking scale
p
F [3] and the cross sections vary as 1=m4

~G
[4]. If

supersymmetry is present, and the gravitino is very light (m ~G
� 10�4 eV/c2), it can be seen at the Tevatron

by looking at �nal states which include gravitinos and ordinary particles only [4]. In this case the lightest

supersymmetric particle is the gravitino which escapes undetected manifesting itself as E/
T
.

We present in this paper cross section limits for processes with an energetic jet plus large E/
T
. This sig-

nature is characteristic of processes not described by the Standard Model, such as the production of light

gravitino pairs plus one jet [4]. The data sample used for this analysis was collected with the CDF detector

from 1994 to 1995, and corresponds to a total integrated luminosity of 87 pb�1. The CDF detector is de-

scribed in detail elsewhere [5]; only features essential to this analysis are summarized here. The momenta of

charged particles are measured in the central tracking chamber (CTC), which is inside a 1:4 T superconduct-

ing solenoidal magnet. Outside the CTC, electromagnetic and hadronic calorimeters, which are segmented

in � � � towers and cover the pseudorapidity region j�j < 4:2 [6], are used to identify jets and electron

candidates. Outside the calorimeters, drift chambers in the region j�j < 1:0 provide muon identi�cation.

Events for this analysis passed a multilevel trigger system which selected events with E/T � 35 GeV. E/T is

de�ned to be the magnitude of the vector sum of transverse energy in all calorimeter towers with j�j � 3:6 [7].

After removing cosmic ray and accelerator related backgrounds [8] we select events with E/T � 50 GeV, at

least one jet [9] with transverse energy ET � 10 GeV in the central region, j�j � 0:7, and with the additional

request of ET � 80 GeV for the most energetic jet. These requirements de�ne the topology we are looking
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for and reduce the presence of unphysical backgrounds.

The backgrounds expected from Standard Model sources are due to W + jet or Z + jet processes plus a

small contribution from t�t and diboson (WW;WZ;ZZ) production. We estimate these with the PYTHIA

[10] generator and a full simulation of the CDF detector. The cross sections for the W=Z + jet processes are

taken, for each value of jet multiplicity, from CDF measurements [11,12]. The cross sections for t�t and diboson

processes are taken from theory [13,14]. The contribution from all these processes is reduced by rejecting

events containing electrons or muons with large transverse momentum, PT : PT � 10 GeV/c for electrons;

PT � 5 GeV/c for muons or PT � 10 GeV/c if the muon is within �R �
p
(��)2 + (��)2 = 1 from a jet.

Additional rejection is obtained by removing events which contain a jet with a ratio of electromagnetic to

total energy larger than 0.95 or isolated tracks of PT � 30 GeV/c. Here an isolated track is de�ned as a

track for which the
P

PT of additional tracks within a cone of radius �R = 0:4 is smaller than 10 GeV/c.

A total of 16; 019 events pass these requirements.

The resulting data sample is dominated by instrumental backgrounds, due to mismeasurement of otherwise

balanced QCD multijet events. The behavior of these backgrounds is studied using a control sample passing a

trigger which selected 1/40 of the events having at least one jet with ET � 50 GeV. Apart from prescaling, the

kinematical requirements we impose guarantee full overlap with the signal sample. To reduce the instrumental

backgrounds we cut on the azimuthal angle, ��(E/T ; j), between the direction of E/T and the nearest jet.

The distributions of ��(E/T ; j) for the data, the control sample, and for the Standard Model processes

considered are shown in Fig. 1. The requirement ��(E/
T
; j) � 1:57 radians is very e�ective in removing the

instrumental backgrounds: from an extrapolation of the behaviour of the control sample, and loosening the

E/T cut to populate the tails of the distribution, we derive that at most 14 events (at 95% con�dence level,

C.L.) from instrumental backgrounds are expected to survive this cut with respect to a total of 379 events

selected. The number of events expected from Standard Model processes is 380 � 129, with contributions

mainly from Z+jet (204�69) andW+jet (171�57) processes. Backgrounds from cosmic rays or beam halo

have been considered and found negligible [8] (� 4 events at 95% C.L.). One source of uncertainty on the

background estimate derives from uncertainties on the production cross sections (20% for W=Z + jet cross

sections [11,12], 20% for t�t corresponding to the range of theoretical calculations [13] and 30% for diboson

production related to the use of di�erent sets of parton distribution functions [14]). Another contribution
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comes from the uncertainty on the selection acceptance (25%) due mainly to the uncertainty on the jet

energy scale (from 5% for low-ET jets to 3% for high-ET ones, reecting the uncertainty in our knowledge of

the reconstructed jet energy [9]). A minor contribution of 4% comes from the uncertainty on the integrated

luminosity.

A jet correction algorithm [15] is applied to E/
T
which takes into account calorimeter nonlinearities and

reduced response at boundaries between modules and calorimeter subsystems. No correction is applied for

high-PT muons since we remove the events containing them. Fig. 2 shows the E/
T
distribution; the data

and the expectation for Standard Model processes are in good agreement. The 95% C.L. upper limits on

the product of acceptance times cross section for the production of physics beyond the Standard Model are

obtained using a Monte Carlo technique [16] which convolutes the uncertainties on the integrated luminosity

with background expectations. The limits, as a function of the E/
T
threshold, E/

min

T
, are shown in Fig. 3.

Process speci�c systematic uncertainty on the acceptance need to be included.

The production of gravitinos, p�p ! ~G ~Gg; ~G ~Gq, is simulated in HERWIG [17] by including the calcu-

lated matrix elements [4], followed by a detector simulation. For the generation the following inputs are

used:
p
F = 200 GeV; factorization/renormalization scale, �, equal to the transverse energy of the emitted

quark/gluon; and the MRSD0 set of parton distribution functions [18]. For such a choice of parameters,

the production cross section, evaluated for P
~G ~G

T
� 100 GeV/c, amounts to 12:6 � 4:0 pb, where P

~G ~G

T
is

the transverse magnitude of the vector sum of the two gravitino momenta before any further radiation has

occurred. The uncertainty on the cross section has several contributions which are added in quadrature:

(i) 30% due to the choice of factorization/renormalization scale (� = 2ET vs � = ET =2); (ii) 10% due to

the gluon radiation modeling in the Monte Carlo, obtained by comparing the cross sections before and after

radiation occurs; (iii) and 5% due to the choice of parton distribution function (e.g. MRSD0 vs CTEQ2M

[19]). The signal acceptance is the fraction of events with P
~G ~G

T
� 100 GeV/c which pass the selection with

a cut on E/T .

We use the Monte Carlo technique mentioned above and convolute the uncertainty on the acceptance with

background estimates to derive the upper limit on the production cross section for ~G ~G + jet events with

P
~G ~G

T
� 100 GeV/c (see Fig. 4). The best sensitivity (i.e. the smallest upper limit on the cross section)

is reached for E/
min

T = 175 GeV. For such a threshold, the acceptance amounts to (6:2 � 1:2)%, where the
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uncertainty is dominated by the choice of absolute energy scale and the modeling of initial or �nal state gluon

radiation. Apart from the E/
T
threshold, the other selection criteria have a relative e�ciency of about 80%,

essentially due to the requirement of a central jet and to the ��(E/
T
; j) cut. With 19 events selected above

the optimized E/
T
threshold of 175 GeV and an estimated background of 21:6�7:0 events, we derive the 95%

C.L. upper limit on the signal of 16:9 events, accounting for the 20% relative uncertainty on the acceptance.

This signal corresponds to an upper limit on the production cross section of 3.1 pb for P
~G ~G

T
� 100 GeV/c.

In an ensemble of pseudo-experiments with the expected background and no true signal we would obtain

this limit or better 35% of the time. Considering the 1=F 4 dependence of the production cross section we

derive, from the comparison to the theory, a 95% C.L. limit
p
F � 217 GeV. Such a limit corresponds to a

gravitino mass larger than 1:1� 10�5 eV/c2. We note that these limits are independent of any unmeasured

parameters; they would become stronger if other supersymmetric particles were produced.

In conclusion, we have compared events containing large E/
T
and at least one energetic jet to the expec-

tations from Standard Model processes and instrumental backgrounds. The E/
T
distribution has been used

to derive upper limits on the product of acceptance times cross section for the production of new processes

beyond the Standard Model. We have selected 19 events with E/
T
� 175 GeV with respect to an estimated

background of 21:6 � 7:0 events. This implies a 95% C.L. upper limit on the cross section of 3.1 pb for

the production of ~G ~G + jet events with P
~G ~G

T
� 100 GeV/c. Comparing this number to the theoretical

cross section we have derived the 95% C.L. limit
p
F � 217 GeV, which corresponds to a gravitino mass

m ~G
� 1:1� 10�5 eV/c2. This limit is comparable to LEP measurements [20] based on events with photons

and missing energy.
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FIG. 1. The distribution of ��(E/
T
; j) for events

before the �� cut is applied (points), compared to the

instrumental backgrounds inferred from the control

sample (white area) and the Standard Model back-

grounds (shaded area).
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